Study of the effective fraction of areca nut husk fibre composites based on mechanical properties
DOI:
https://doi.org/10.58712/jerel.v3i1.126Keywords:
ANHF, Tensile strength, Flexural strength, Natural fibre, Natural compositeAbstract
Areca nut husk fibers have the potential to be used as reinforcement in polymer composites as a substitute for synthetic fibres. In the manufacture of fibre composites, one of the important factors in determining the strength is the matrix to fibre ratio. This study aims to determine the effective ratio or fraction between areca nut husk fibre and orthophthalic polyester resin. Before using areca nut husk fibre, it was chemically treated so that only cellulose remained in the fibre. The areca nut husk fibre was processed into sheets. The composite was manufactured using the hand lay-up technique. Tensile and flexural tests were carried out to determine the mechanical properties. Based on the results of the tests conducted, there are differences in the mechanical properties of the composites. The tensile test results show that the 40% fibre fraction has the highest tensile strength and modulus values. On the other hand, in the flexure tests, the highest tensile strength and modulus values are found in the 30% fibre fraction.
Downloads
References
Ali, A., Shaker, K., Nawab, Y., Jabbar, M., Hussain, T., Militky, J., & Baheti, V. (2018). Hydrophobic treatment of natural fibers and their composites—A review. Journal of Industrial Textiles, 47(8), 2153–2183. https://doi.org/10.1177/1528083716654468
Alshahrani, H., & Prakash, V. R. A. (2024). Effect of silane-grafted orange peel biochar and areca fibre on mechanical, thermal conductivity and dielectric properties of epoxy resin composites. Biomass Conversion and Biorefinery, 14(6), 8081–8089. https://doi.org/10.1007/s13399-022-02801-w
Bos, H. L. (2004). The potential of flax fibres as reinforcement for composite materials. https://api.semanticscholar.org/CorpusID:221260580
Doan, T.-T.-L., Gao, S.-L., & Mäder, E. (2006). Jute/polypropylene composites I. Effect of matrix modification. Composites Science and Technology, 66(7–8), 952–963. https://doi.org/10.1016/j.compscitech.2005.08.009
Gapsari, F., Purnowidodo, A., Hidayatullah, S., & Suteja, S. (2021). Characterization of Timoho Fiber as a reinforcement in green composite. Journal of Materials Research and Technology, 13, 1305–1315. https://doi.org/10.1016/j.jmrt.2021.05.049
Haque, M. M., Rejaul Haque, M., Munshi, Md. R., Alam, S. S., Hasan, M., Gafur, M. A., Rahman, F., Firdaus, M., & Ahmod, S. (2021). Physico-mechanical properties investigation of sponge-gourd and betel nut reinforced hybrid polyester composites. Advances in Materials and Processing Technologies, 7(2), 304–316. https://doi.org/10.1080/2374068X.2020.1766298
Jayamani, E., Hamdan, S., Rahman, M. R., & Bakri, M. K. Bin. (2014). Investigation of Fiber Surface Treatment on Mechanical, Acoustical and Thermal Properties of Betelnut Fiber Polyester Composites. Procedia Engineering, 97, 545–554. https://doi.org/10.1016/j.proeng.2014.12.282
Lakshmana, K. T., & Erko, K. G. (2022). Mechanical Properties of Epoxy Composite Using Papaya Slice Biochar and Areca Nut Chopped Fibre. Advances in Polymer Technology, 2022, 1–8. https://doi.org/10.1155/2022/4733375
Srinivasa, C. V., Arifulla, A., Goutham, N., Santhosh, T., Jaeethendra, H. J., Ravikumar, R. B., Anil, S. G., Santhosh Kumar, D. G., & Ashish, J. (2011). Static bending and impact behaviour of areca fibers composites. Materials & Design, 32(4), 2469–2475. https://doi.org/10.1016/j.matdes.2010.11.020
Srinivasan, H., Arumugam, H., A, A. D., Krishnasamy, B., M.I, A. A., Murugesan, A., & Muthukaruppan, A. (2023). Desert cotton and areca nut husk fibre reinforced hybridized bio-benzoxazine/epoxy bio-composites: Thermal, electrical and acoustic insulation applications. Construction and Building Materials, 363, 129870. https://doi.org/10.1016/j.conbuildmat.2022.129870
Sunny, G., & Rajan, T. P. (2022). Review on Areca Nut Fiber and its Implementation in Sustainable Products Development. Journal of Natural Fibers, 19(12), 4747–4760. https://doi.org/10.1080/15440478.2020.1870623
Westman, M. P., Fifield, L. S., Simmons, K. L., Laddha, S., & Kafentzis, T. A. (2010). Natural Fiber Composites: A Review. https://api.semanticscholar.org/CorpusID:135781056
Yousif, B. F., Gill, N. S., Lau, S. T. W., & Devadas, A. (2008). The Potential of Using Betelnut Fibres for Tribo-Polyester Composites Considering Three Different Orientations. Volume 4: Design and Manufacturing, 79–84. https://doi.org/10.1115/IMECE2008-68648
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Irfan Muhammad Akbar, Anna Niska Fauza, Zainal Abadi, Dieter Rahmadiawan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Fadhilah Ikhsan Dinul, Hendri Nurdin, Dieter Rahmadiawan, Nasruddin, Imtiaz Ali Laghari, Tarig Elshaarani, Comparison of NaOH and Na2CO3 as absorbents for CO2 absorption in carbon capture and storage technology , Journal of Engineering Researcher and Lecturer: Vol. 2 No. 1 (2023): Regular Issue
- Roki Putra Anwar, Andre Kurniawan, Mulianti, Zainal Abadi, Analysis and control of occupational safety risks using the HIRARC method in the Machining Workshop , Journal of Engineering Researcher and Lecturer: Vol. 3 No. 2 (2024): Regular Issue