Performance analysis of inserted resonators in microstrip array antenna for biomedical applications

Authors

  • Cing Nuam Man Department of Electronic Engineering, Yangon Technological University, Myanmar
  • Thanda Win Department of Electronic Engineering, Yangon Technological University, Myanmar
  • Hla Myo Tun Research Center, Yangon Technological University, Myanmar
  • Mya Mya Aye Department of Electronic Engineering, Yangon Technological University, Myanmar

DOI:

https://doi.org/10.58712/jerel.v4i1.177

Keywords:

microstrip patch array antenna, FR4 substrate, resonance frequency, resonator

Abstract

This paper investigates the use of inserted resonators in designing microstrip patch array antenna for biomedical applications, such as respiratory rate detection. The purpose of this study is to analyze size and placement of resonator, and slots which influence the overall performance. The antenna was constructed by connecting two single microstrip patch antennas (11.7mm × 15.7 mm×1.6 mm) on an FR4 substrate with a dielectric constant (????r = 4.4) to form (26 mm × 50mm × 1.6 mm). It achieves a miniaturized design of the expected resonance frequency with directional polarization, and provides good gain and bandwidth. The simulations were operated using FEKO software. The results and size of antenna were compared with references designs. The antenna was also designed for a 5-6 GHz frequency range, making it suitable for ISM band (Industrial, Medical, and Science) band range, low-power wireless applications, including Wi-Fi, and Bluetooth, as well as robotic systems, low-noise amplifier (LNA), 5 G applications, and WiFi 6E standard applications.

Downloads

Download data is not yet available.

References

Aihsan, M. Z., Hariz, M. F., Mustafa, W. A., Idrus, S. Z. S., Rahim, H. A., & Alkhayyat, A. (2021). Design and Simulation of 2×1 and 2×2 Array Antenna at 5.8 GHz for Gain and Axial Ratio Enhancement. 2021 International Conference on Advanced Computer Applications (ACA), 223–227. https://doi.org/10.1109/ACA52198.2021.9626803

Alkurt, F. O., Unal, E., Palandoken, M., Abdulkarim, Y. I., Hasar, U. C., & Karaaslan, M. (2023). Radiation pattern reconfigurable cubical antenna array for 2.45 GHz wireless communication applications. Wireless Networks, 29(1), 235–246. https://doi.org/10.1007/s11276-022-03116-4

B, U. R., Koteswara Rao, N. V, & Sekhar, P. C. (2024). Design of Integrated Hexagonal Microstrip Patch Antenna with DGS for Wideband Applications. 2024 IEEE Wireless Antenna and Microwave Symposium (WAMS), 1–5. https://doi.org/10.1109/WAMS59642.2024.10527915

Balanis, C. A. (2009). Antenna Theory: Analysis and Design, (3RD ED.). In Wiley India Pvt. Limited.

Emara, H. M., El Dyasti, S. K., Ghouz, H. H. M., Fathy Abo Sree, M., & Abdel Fatah, S. Y. (2023). Compact High Gain Microstrip Array Antenna Using DGS Structure for 5G Applications. Progress In Electromagnetics Research C, 130, 213–225. https://doi.org/10.2528/PIERC22122110

En-naghma, W., Latrach, M., Halaq, H., & El Ougli, A. (2025). An experimental study of a high-gain, wideband circularly polarized printed antenna array at 2.45 GHz in the ISM band for wireless power transmission applications. Scientific African, 27, e02619. https://doi.org/10.1016/j.sciaf.2025.e02619

Hamad, E. K. I., & Abdelaziz, A. (2019). Performance of a Metamaterial-based 1×2 Microstrip Patch Antenna Array for Wireless Communications Examined by Characteristic Mode Analysis. Radioengineering, 28(4), 680–688. https://doi.org/10.13164/re.2019.0680

Irfansyah, A., Harianto, B. B., & Pambudiyatno, N. (2021). Design of Rectangular Microstrip Antenna 1x2 Array for 5G Communication. Journal of Physics: Conference Series, 2117(1), 012028. https://doi.org/10.1088/1742-6596/2117/1/012028

Jeyapoornima, B., & Jeya Sheela, J. J. (2024). Design of Antenna Array of 2x1 Configuration for Microwave Imaging. 2024 IEEE International Conference on Communication, Computing and Signal Processing (IICCCS), 1–5. https://doi.org/10.1109/IICCCS61609.2024.10763824

Kadir Al-Nahiun, S. A., Mahbub, F., Islam, R., Akash, S. B., Hasan, R. R., & Rahman, Md. A. (2021). Performance Analysis of Microstrip Patch Antenna for the Diagnosis of Brain Cancer & Tumor using the Fifth-Generation Frequency Band. 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), 1–6. https://doi.org/10.1109/IEMTRONICS52119.2021.9422503

Kumar, A., Ansari, A. Q., Kanaujia, B. K., Kishor, J., & Matekovits, L. (2021). A Review on Different Techniques of Mutual Coupling Reduction Between Elements of Any MIMO Antenna. Part 1: DGSs and Parasitic Structures. Radio Science, 56(3). https://doi.org/10.1029/2020RS007122

Lakrit, S., Ammor, H., Matah, S., Karli, R., Saadi, A., Terhzaz, J., & Tribak, A. (2018). A new small high-gain wideband rectangular patch antenna for X and Ku bands applications. Journal of Taibah University for Science, 12(2), 202–207. https://doi.org/10.1080/16583655.2018.1451105

Liu, X., Di, Y., Liu, H., Wu, Z., & Tentzeris, M. M. (2016). A Planar Windmill-Like Broadband Antenna Equipped With Artificial Magnetic Conductor for Off-Body Communications. IEEE Antennas and Wireless Propagation Letters, 15, 64–67. https://doi.org/10.1109/LAWP.2015.2429683

Natali, Y., Irvana, R., Yudiansyah, Y., Widi Astuti, D., Astuti C, D., & Apriono, C. (2024). Study on Defected Ground Structure Models with Miniaturized Patches for Broadband Wireless Systems. Journal of Communications, 168–174. https://doi.org/10.12720/jcm.19.3.168-174

Olawoye, T. O., & Kumar, P. (2022). A High Gain Antenna with DGS for Sub-6 GHz 5G Communications. Advanced Electromagnetics, 11(1), 41–50. https://doi.org/10.7716/aem.v11i1.1670

Pepe, D., Vallozzi, L., Rogier, H., & Zito, D. (2013). Planar Differential Antenna for Short-Range UWB Pulse Radar Sensor. IEEE Antennas and Wireless Propagation Letters, 12, 1527–1530. https://doi.org/10.1109/LAWP.2013.2291957

Poffelie, L. A. Y., Soh, P. J., Yan, S., & Vandenbosch, G. A. E. (2016). A High-Fidelity All-Textile UWB Antenna With Low Back Radiation for Off-Body WBAN Applications. IEEE Transactions on Antennas and Propagation, 64(2), 757–760. https://doi.org/10.1109/TAP.2015.2510035

Raj, A., & Mandal, D. (2024). Design and performance analysis of fractal slot array antenna for advanced 5G mm-wave applications. International Journal of Electronics, 1–23. https://doi.org/10.1080/00207217.2024.2408788

Rojas, J. M., Reyes-Ayala, M., Andrade-Gonzalez, E. A., Chavez-Sanchez, S., Terres-Peña, H., & Rodriguez-Rivera, R. (2023). 2 x 1 Rectangular-Patch Antenna Array at 2.4 GHz. Wseas Transactions on Communications, 22, 49–57. https://doi.org/10.37394/23204.2023.22.5

Yang, Z., Bocca, M., Jain, V., & Mohapatra, P. (2018). Contactless Breathing Rate Monitoring in Vehicle Using UWB Radar. Proceedings of the 7th International Workshop on Real-World Embedded Wireless Systems and Networks, 13–18. https://doi.org/10.1145/3277883.3277884

Yousaf, M., Mabrouk, I. Ben, Zada, M., Akram, A., Amin, Y., Nedil, M., & Yoo, H. (2021). An Ultra-Miniaturized Antenna With Ultra-Wide Bandwidth Characteristics for Medical Implant Systems. IEEE Access, 9, 40086–40097. https://doi.org/10.1109/ACCESS.2021.3064307

Zito, D., & Pepe, D. (2014). Planar Differential Antenna Design and Integration With Pulse Radar Microchip Sensor. IEEE Sensors Journal, 14(8), 2477–2487. https://doi.org/10.1109/JSEN.2013.2295678

Downloads

Published

2025-04-18

How to Cite

Man, C. N., Win, T., Tun, H. M., & Aye, M. M. (2025). Performance analysis of inserted resonators in microstrip array antenna for biomedical applications. Journal of Engineering Researcher and Lecturer, 4(1), 9–21. https://doi.org/10.58712/jerel.v4i1.177

Issue

Section

Engineering