Optimization of impeller blade number in centrifugal pump for crude oil using Solidworks Flow Simulation

Authors

  • Muhammad Fikhri Aldio Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Padang, INDONESIA
  • Waskito Waskito Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Padang, INDONESIA
  • Purwantono Purwantono Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Padang, INDONESIA
  • Remon Lapisa Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Padang, INDONESIA

DOI:

https://doi.org/10.58712/jerel.v2i3.116

Keywords:

Internal analysis, mesh independent test, fluid region, solve time

Abstract

Every type of fluid to be transferred has specific characteristics such as viscosity, density, friction, and others, thus requiring the selection of the appropriate pump type. One of the factors influencing the performance of a centrifugal pump is the number of blades used. This research aims to explore the influence of the number of blades on a centrifugal pump used as a fluid transfer device for crude oil. The study was conducted using the Computational Fluid Dynamics (CFD) method. The analyzed variations of the number of blades included three options, namely centrifugal pumps with 12, 14, and 16 blades. Based on the simulation results conducted using Solidworks Research License 2021-2022 software, it was found that the centrifugal pump with 12 blades exhibited the most optimal performance. The simulation results show uniform flow and pressure around the mid-span plane of the 12-blade impeller. In the case of the 12-blade impeller, the flow thrown by the centrifugal force is concentrated in the middle of the channel towards the outlet, resulting in higher pressure and volume flow rates.

Downloads

Download data is not yet available.

References

Abo Elyamin, G. R. H., Bassily, M. A., Khalil, K. Y., & Gomaa, M. Sh. (2019). Effect of impeller blades number on the performance of a centrifugal pump. Alexandria Engineering Journal, 58(1), 39–48. https://doi.org/10.1016/j.aej.2019.02.004

Anagnostopoulos, J. S. (2009). A fast numerical method for flow analysis and blade design in centrifugal pump impellers. Computers & Fluids, 38(2), 284–289. https://doi.org/10.1016/j.compfluid.2008.02.010

Asfar, Mhd. I. Y., Soedarsono, J. W., Wijaya, A., Aditiyawarman, T., Soelistiyono, D., & Ramadhan, R. (2021). Quantitative Risk-Based Inspection on Gas Riser Pipelines at Offshore Facilities. Teknomekanik, 4(2), 78–84. https://doi.org/10.24036/teknomekanik.v4i2.11172

Bellary, S. A. I., & Samad, A. (2016). Pumping crude oil by centrifugal impeller having different blade angles and surface roughness. Journal of Petroleum Exploration and Production Technology, 6(1), 117–127. https://doi.org/10.1007/s13202-015-0173-y

Bozorgasareh, H., Khalesi, J., Jafari, M., & Gazori, H. O. (2021). Performance improvement of mixed-flow centrifugal pumps with new impeller shrouds: Numerical and experimental investigations. Renewable Energy, 163, 635–648. https://doi.org/10.1016/j.renene.2020.08.104

Cancan, P., Xiaodong, Z., Zhiguang, G., Ju, W., & Yan, G. (2022). Research on cooperative optimization of multiphase pump impeller and diffuser based on adaptive refined response surface method. Advances in Mechanical Engineering, 14(1), 168781402110729. https://doi.org/10.1177/16878140211072944

Chen, J., Shi, W., & Zhang, D. (2021). Influence of blade inlet angle on the performance of a single blade centrifugal pump. Engineering Applications of Computational Fluid Mechanics, 15(1), 462–475. https://doi.org/10.1080/19942060.2020.1868341

Ding, H., Li, Z., Gong, X., & Li, M. (2019). The influence of blade outlet angle on the performance of centrifugal pump with high specific speed. Vacuum, 159, 239–246. https://doi.org/10.1016/J.VACUUM.2018.10.049

Erizon, N., Jasman, J., Irzal, I., Aldio, M. F., Saputra, A., & Tin, C. T. (2022). Numerical analysis of flow characteristics of the oil-water mixture in stratified-annular horizontal pipe. Teknomekanik, 5(2), 80–89. https://doi.org/10.24036/teknomekanik.v5i2.14572

Fingas, M. (2011). Physical Spill Countermeasures. In Oil Spill Science and Technology (pp. 303–337). Elsevier. https://doi.org/10.1016/B978-1-85617-943-0.10012-7

Hu, Y., Xu, F., & Gao, Z. (2022). A Comparative Study of the Simulation Accuracy and Efficiency for the Urban Wind Environment Based on CFD Plug-Ins Integrated into Architectural Design Platforms. Buildings, 12(9), 1487. https://doi.org/10.3390/buildings12091487

Jurmut, H. A., Al-Hamadani, H., & Hashim, W. M. (2020). Experimental study of the effect of impeller blades different shape on centrifugal pump performance. IOP Conference Series: Materials Science and Engineering, 745(1), 012076. https://doi.org/10.1088/1757-899X/745/1/012076

Kan, K., Zhang, Q., Zheng, Y., Xu, H., Xu, Z., Zhai, J., & Muhirwa, A. (2022). Investigation into Influence of Wall Roughness on the Hydraulic Characteristics of an Axial Flow Pump as Turbine. Sustainability, 14(14), 8459. https://doi.org/10.3390/su14148459

Kang, W. Z., Zhou, L. J., Wang, Z. W., & Wang, W. (2019). Analysis of backflow effect in a centrifugal pump. IOP Conference Series: Earth and Environmental Science, 240, 032007. https://doi.org/10.1088/1755-1315/240/3/032007

Li, J., Tang, L., & Zhang, Y. (2020). The influence of blade angle on the performance of plastic centrifugal pump. Advances in Materials Science and Engineering, 2020. https://doi.org/10.1155/2020/7205717

Mrope, H. A., Chande Jande, Y. A., & Kivevele, T. T. (2021). A Review on Computational Fluid Dynamics Applications in the Design and Optimization of Crossflow Hydro Turbines. Journal of Renewable Energy, 2021, 1–13. https://doi.org/10.1155/2021/5570848

Nadaraja, D., Taib, I., Darlis, N., Kadir, R., Osman, K., & Khudzari, Z. (2023). Analysis of Flow Characteristics for Different Blade Outlet Angle in LVAD. CFD Letters, 15(11), 79–91. https://doi.org/10.37934/cfdl.15.11.7991

Peng, G., Chen, Q., Zhou, L., Pan, B., & Zhu, Y. (2020). Effect of Blade Outlet Angle on the Flow Field and Preventing Overload in a Centrifugal Pump. Micromachines 2020, Vol. 11, Page 811, 11(9), 811. https://doi.org/10.3390/MI11090811

Putra, A. P., Soedarsono, J. W., Pangesty, A. I., Yusran asfar, M. I., Aprizal, A., & Ramadhan, R. (2022). The Risk Identification On 3" GL BO3-52520 Process Pipelines Using a Risk-Based Inspection Method. Teknomekanik, 5(1), 28–34. https://doi.org/10.24036/teknomekanik.v5i1.12772

Riady, R., Soedarsono, J. W., Riastuti, R., & Adipurnama, I. (2022). Material selection for raw gas pipeline at SBR#2 gas field. Teknomekanik, 5(2), 63–71. https://doi.org/10.24036/teknomekanik.v5i2.13372

Sakran, H. K., Abdul Aziz, M. S., Abdullah, M. Z., & Khor, C. Y. (2022). Effects of Blade Number on the Centrifugal Pump Performance: A Review. Arabian Journal for Science and Engineering, 47(7), 7945–7961. https://doi.org/10.1007/s13369-021-06545-z

Subroto, & Effendy, M. (2019). Optimization of centrifugal pump performance with various blade number. 020016. https://doi.org/10.1063/1.5112400

Susilo, S. H., & Setiawan, A. (2021). Analysis of the number and angle of the impeller blade to the performance of centrifugal pump. EUREKA: Physics and Engineering, 2021(5), 62–68. https://doi.org/10.21303/2461-4262.2021.002001

Szpicer, A., Bi?kowska, W., Wojtasik-Kalinowska, I., Salih, S. M., & Pó?torak, A. (2023). Application of computational fluid dynamics simulations in food industry. European Food Research and Technology, 249(6), 1411–1430. https://doi.org/10.1007/s00217-023-04231-y

Volk, A., Ghia, U., & Liu, G. R. (2018). Assessment of CFD-DEM solution error against computational cell size for flows through a fixed-bed of binary-sized particles. Powder Technology, 325, 519–529. https://doi.org/10.1016/j.powtec.2017.11.051

Wang, H., Long, B., Wang, C., Han, C., & Li, L. (2020). Effects of the Impeller Blade with a Slot Structure on the Centrifugal Pump Performance. Energies, 13(7), 1628. https://doi.org/10.3390/en13071628

Wang, Y. Y., Zhao, W. G., Han, X. D., Fan, P. J., Liu, Z. L., & Hu, J. Q. (2023). Effects of the Centrifugal Pump Outlet Blade Angle on Its Internal Flow Field Characteristics under Cavitation Condition. Journal of Applied Fluid Mechanics, 16(2), 389–399. https://doi.org/10.47176/jafm.16.02.1241

Xie, Z., Cao, X., Zhang, J., Darihaki, F., Karimi, S., Xiong, N., & Li, Q. (2021). Effect of cell size on erosion representation and recommended practices in CFD. Powder Technology, 389, 522–535. https://doi.org/10.1016/j.powtec.2021.05.066

Zhou, W., Zhao, Z., Lee, T. S., & Winoto, S. H. (2003). Investigation of Flow Through Centrifugal Pump Impellers Using Computational Fluid Dynamics. International Journal of Rotating Machinery, 9(1), 49–61. https://doi.org/10.1155/S1023621X0300006X

Downloads

Published

2023-11-16

How to Cite

Aldio, M. F., Waskito, W., Purwantono, P., & Lapisa, R. (2023). Optimization of impeller blade number in centrifugal pump for crude oil using Solidworks Flow Simulation. Journal of Engineering Researcher and Lecturer, 2(3), 80–93. https://doi.org/10.58712/jerel.v2i3.116

Issue

Section

Engineering